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Abstract
By using Monte Carlo simulations in the grand canonical ensemble we
investigate the bulk phase behaviour of a model colloid–polymer mixture, the
so-called Asakura–Oosawa model. In this model the colloids and polymers are
considered as spheres with a hard-sphere colloid–colloid and colloid–polymer
interaction and a zero interaction between polymers. In order to circumvent the
problem of low acceptance rates for colloid insertions, we introduce a cluster
move where a cluster of polymers is replaced by a colloid. We consider the
transition from a colloid-poor to colloid-rich phase which is analogous to the
gas–liquid transition in simple liquids. Successive umbrella sampling, recently
introduced by Virnau and Müller (2003 Preprint cond-mat/0306678), is used
to access the phase-separated regime. We calculate the demixing binodal and
the interfacial tension, also in the region close to the critical point. Finite
size scaling techniques are used to accurately locate the critical point. Also
investigated are the colloid density profiles in the phase-separated regime. We
extract the interfacial thickness w from the latter profiles and demonstrate
that the interfaces are subject to spatial fluctuations that can be understood
by capillary wave theory. In particular, we find that, as predicted by capillary
wave theory, w2 diverges logarithmically with the size of the system parallel to
the interface.

1. Introduction

Mixtures of colloids and non-adsorbing polymers continue to be an exciting meeting ground
for experimental, theoretical and computer simulation research. It is known from experiments
(e.g. [1, 2]) that these systems may exhibit a fluid–fluid phase-separation of purely entropic
origin which is due to a depletion effect. According to this, in a colloid–polymer mixture,
each colloidal particle is surrounded by a depletion zone from which polymers are excluded.
When two colloids are close together, their depletion zones may overlap, thereby increasing
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the free volume, and hence the entropy, of the polymers. If the gain in entropy is sufficient,
demixing will occur. The demixing transition is thus of profound theoretical interest because it
is driven by entropy, and not by energy. From an experimental point of view, colloid–polymer
mixtures are moreover interesting since, because of the relatively large size of the particles,
very detailed information can be obtained. In the case of a phase-separated mixture, it is
even possible to directly observe the colloid–polymer interface [3]. Very recently, Aarts et al
[4] were even able to visualize experimentally capillary waves, i.e. spatial fluctuations of the
colloid–polymer interface.

Colloid–polymer mixtures are thus convenient model systems to study a range of physical
phenomena. As a result, these mixtures have sparked many experimental and theoretical
investigations, and also computer simulations. On the theoretical side, much progress was
made with the colloid–polymer model introduced by Asakura and Oosawa [5, 6]. In this model
(the AO model) colloids and polymers are treated as spheres with respective radii Rc and Rp.
Hard sphere interactions are assumed between colloid–colloid (cc) and colloid–polymer (cp)
pairs, while polymer–polymer (pp) pairs can interpenetrate freely. This yields the following
pair potentials:

ucc(r) =
{

∞ for r < 2Rc

0 otherwise,

ucp(r) =
{

∞ for r < Rc + Rp

0 otherwise,

upp(r) = 0,

(1)

where r is the distance between two particles. The polymers thus represent ideal polymer coils
with a radius of gyration Rp.

Much insight into the phase behaviour of the AO model was gained using the free volume
method of Lekkerkerker [7] (in [8] this approach was also applied to interacting polymers).
This method was used to obtain the phase diagram for a wide range of colloid to polymer size
ratios q ≡ Rp/Rc on a mean-field level. The general result is that demixing occurs for q ≈ 0.25
and above, provided that the polymer fugacity is high enough. Additional progress was made
with density functional theory (DFT). DFT was used to estimate the interfacial tension of the
colloid–polymer interface, and also the colloid density profile across the interface, but again
on a mean-field level [9, 10].

Many of the theoretical predictions for the AO model have been tested in computer
simulations [11–14]. In general, these simulations yield binodals in reasonable agreement
with mean-field free volume theory. Unfortunately, close to the critical point, precisely in the
regime where mean-field approximations are expected to break down, these simulations suffer
from large error bars. This is especially true for simulations carried out in the Gibbs ensemble.
Thus, a meaningful comparison between theory and simulation is not possible in the vicinity
of the critical point by means of the latter MC simulations. However, note that in [12, 14]
fluid–solid binodals were also presented.

Recently, we introduced a Monte Carlo (MC) method that enables us to simulate the AO
model in the grand canonical ensemble [15, 16]. The grand canonical ensemble naturally lends
itself to the study of phase separation, and offers a number of advantages over the canonical
and the Gibbs ensemble. On the one hand, it allows for accurate measurements of the binodal,
also in the region close to the critical point. On the other hand, it can be used to study interfacial
properties (interfacial tension, density profiles) in the case of phase-separated mixtures.

The purpose of this paper is two-fold. First, we show in which regime mean-field
approximations for the AO model are reliable. To this end, we use our method to obtain
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the phase diagram of the AO model, and compare it directly to the free volume result. As it
turns out, the deviations become substantial close to the critical point. This is to be expected
though, because the AO model belongs to the 3D Ising universality class. We then present an
accurate estimate of the critical point using finite size scaling techniques. Second, we quantify
the effects of capillary waves on the width of the colloid–polymer interface in a phase-separated
AO mixture. Although these effects are often ignored (an exception is the nice review article
of Brader et al [17]), our results for the AO model indicate that interface broadening is an
important effect.

The outline of this paper is as follows. In section 2 we present the used simulation methods
and the phase diagram followed by the results of finite size scaling to estimate the critical point
(section 3). Next, we discuss the effects of capillary waves (section 4). We end with a number
of conclusions in section 5.

2. Phase diagram and interfacial tension

In order to study the phase behaviour of the AO model we use MC simulations in the grand
canonical ensemble, in which the volume V , the respective fugacities {zc, zp} of colloids and
polymers, and the temperature T are fixed [18]. Note that the number of particles inside
V is a fluctuating quantity in the grand canonical ensemble. Since in the AO model all
allowed configurations have zero potential energy, temperature plays a trivial role and the
phase behaviour is controlled by the colloid to polymer size ratio q and the fugacities {zc, zp}.
We consider here a size ratio q = 0.8 and put Rc ≡ 1 to set the length scale. The simulations
are performed in a box with edges Lx × L y × Lz using periodic boundary conditions. One
defines the quantity ηr

p ≡ zp(4π/3)R3
p, known as the polymer reservoir packing fraction, which

plays a role similar to the inverse temperature in simple fluids (e.g. the Lennard-Jones model).
The use of the grand canonical ensemble allows one to bypass certain problems

encountered in the canonical or the Gibbs ensemble. As we shall see below, it remains efficient
close to the critical point, and it allows for an accurate determination of the interfacial tension.
Moreover, the machinery of finite-size scaling can readily be applied in the grand canonical
ensemble. The difficulty of inserting a colloid into a dense polymer system is alleviated by
using a cluster move. The main idea of this MC move is to not insert and remove particles one
at a time, but to remove a cluster of polymers for each colloid that is inserted. The details of
this move are provided elsewhere [15, 16]. A reweighting scheme enables the simulation to
cross the free energy barrier separating the colloid vapour phase from the colloid liquid phase,
and sample the phase-separated regime. Many reweighting schemes are available [18, 19]. We
use the recently developed successive umbrella sampling, the details of which can be found in
the original reference [20].

We demonstrate now that the grand canonical MC in conjunction with the aforementioned
cluster move and successive umbrella sampling is well-suited to determine the binodal and
properties of the interface between the phase-separated species such as the interfacial tension.
During the simulation, one measures the probability P(ηc) that a certain colloid packing
fraction ηc ≡ (4π/3)R3

c Nc/V is observed in a simulation box of fixed volume V (Nc is the
total number of colloids inside V ), i.e. one maintains a histogram counting how often a certain
colloid packing fraction has occurred. Two different system sizes are considered in this section:
V1 = (Lx = L y = 13.3; Lz = 26.5) and V2 = (Lx = L y = 16.7; Lz = 33.4), where the
colloid radius Rc was taken to be the unit of length. Note that the use of elongated simulation
boxes is important for the determination of the interfacial tension (see below). More details
on the simulation can be found elsewhere [15, 16].

If a phase separation occurs, P(ηc) is bimodal. A number of example distributions for this
case are shown in figure 1. The peaks at low ηc correspond to the colloid vapour phase and those
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Figure 1. Logarithm of the probability P(ηc) of observing a colloid packing fraction ηc for an AO
mixture with q = 0.8 at coexistence for several values of ηr

p as indicated. The simulations were
performed in a box with dimensions Lx = L y = 16.7 and Lz = 33.4 using periodic boundary
conditions. Note that the distributions are not normalized.

at high ηc to the colloid liquid phase. The region in between is the phase-separated regime.
The distributions in figure 1 were obtained at coexistence, which means that the fugacity zc

was tuned such that the area under both peaks is equal. The height of the barrier marked �F
in figure 1 corresponds to the free energy barrier separating the coexisting phases. As was
shown by Binder [21], this barrier is related to the interfacial tension via γ = �F/(2A) (with
A = Lx · L y the area of the interface) provided that the size of the system is large enough.
The factor 1/2 in the latter equation for γ stems from the use of periodic boundary conditions
that yield to the formation of two interfaces in the system. It is crucial to use an elongated box
for an accurate determination of γ since this enforces the flat region seen in the distributions
P(ηc) which indicate that the two interfaces in the phase-separated regime are well-separated
from each other and thus interactions between the interfaces are suppressed.

It is also interesting to measure the average polymer packing fraction ηp ≡
(4π/3)R3

p Np/V as a function of ηc, with Np being the number of polymers inside V . This
result is shown in figure 2. In the pure polymer phase (ηc = 0) we expect ηp = ηr

p because the
polymers then form an ideal gas. This is precisely what figure 2 shows: as the colloid packing
fraction in the system increases, the polymer packing fraction in the system decreases and it
is almost zero at ηc = 0.4.

As already mentioned, ηr
p is the control parameter in the AO model, much like temperature

is for the fluid–vapour transition in molecular systems. To obtain the phase diagram,one simply
measures P(ηc) at coexistence for a number of different ηr

p. For each P(ηc) at coexistence,
one reads off the colloid packing fraction of the vapour phase ηV

c and of the liquid phase ηL
c .

This yields the phase diagram in reservoir representation, shown in the inset of figure 3. By
using the result of figure 2 we can convert the reservoir representation into the experimentally
more relevant {ηc, ηp} or system representation, also shown in figure 3. For each P(ηc), one
additionally obtains a value for the interfacial tension using the method of Binder. The results
of this procedure are shown in figure 4, in two different representations.
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Figure 2. Average polymer packing fraction 〈ηp〉 as a function of the colloid packing fraction ηc
for an AO mixture with q = 0.8 and various values for ηr

p as indicated.

Figure 3. Phase diagram of the AO model with q = 0.8 in system representation. Open circles
were obtained using box dimensions Lx = L y = 16.7 and Lz = 33.4; crosses were obtained in a
smaller box with dimensions Lx = L y = 13.3 and Lz = 26.5. The inset shows the phase diagram
in reservoir representation. The squares mark the location of the critical point as obtained using
finite size scaling. The solid curves are results from free volume theory [7, 8].

Comparison of the simulation results in figure 3 shows that finite-size effects are relatively
small, even close to the critical point. However, substantial deviations from free volume
theory are visible, especially in the region close to the critical point. Free volume theory
underestimates the critical polymer fugacity by about 30%. More importantly, this theory
yields the typical mean-field parabolic shape of the binodal (critical exponent β = 1/2) while
in the simulation one obtains the expected flatter binodal. The latter is compatible with a
critical exponent β ≈ 0.325, corresponding to the 3D Ising universality class [22].
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Figure 4. Reduced interfacial tension γ ∗ ≡ 4R2
c γ/(kBT ) for an AO mixture with q = 0.8 as a

function of the difference in packing fraction between the coexisting phases. The box dimensions
are Lx = L y = 16.7 and Lz = 33.4. The inset shows γ ∗ as a function of ηr

p. Open circles are
simulation results; the solid curves are DFT results using fundamental measure theory [23].

In figure 4, the reduced interfacial tension γ ∗ ≡ 4R2
c γ is shown as a function of ηr

p (inset)
and as a function of the difference in the colloid packing fractions of the liquid (L) and the
vapour (V) phase at coexistence, ηL

c –ηV
c . Also included in the figure is the result from a recent

DFT [23]. Although the DFT overestimates the interfacial tension as determined from the
simulation by about 30%, the qualitative behaviour is very similar: both methods predict a
sharp increase in the interfacial tension as ηr

p increases. Note that experimental data for γ ∗
are of the same order as those obtained from simulation and DFT [1, 2]. However, in order to
describe colloid–polymer mixtures on a quantitative level, more sophisticated models than the
AO model are required.

3. Finite size scaling

In this section we determine the critical values of the polymer fugacityηr
p,cr, the colloid chemical

potential µc,cr ≡ kBT ln(zc,cr) (with kB the Boltzmann constant), the polymer packing fraction
ηp,cr , and the colloid packing fraction ηc,cr, by using finite size scaling (FSS) techniques. FSS
is readily applicable to grand canonical MC [24]. The great advantage in this case is that
the total number of particles is allowed to fluctuate. Therefore, the critical order-parameter
fluctuations can be observed on the maximum length scale possible, namely the system size
itself.

The standard approach is to measure the cumulant ratio of the probability distribution
P(ηc) as a function of the control parameter for different system sizes. As shown by
Binder [25], the cumulant becomes system size independent at the critical value of the control
parameter provided that the system is large enough such that corrections to FSS are negligible.
To locate the critical point, we thus need to measure the value of (for example) the first order
cumulant M = 〈m2〉/〈|m|〉2 as a function of ηr

p close to the critical point for different system
sizes, with m = ηc − 〈ηc〉. The results of this procedure are shown in figure 5. Note that the
simulations were done in cubic simulation boxes with different lengths L, the values of which
are indicated in figure 5. The critical fugacity is at the intersection of the lines, from which we
obtain ηr

p,cr = 0.766 ± 0.002.
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Figure 5. Cumulant ratio M as a function of ηr
p for an AO mixture with q = 0.8 for various

system sizes. The simulations were performed in a cubic box with length L as indicated. From the
intercept we obtain for the critical polymer fugacity ηr

p,cr = 0.766 ± 0.002.

Figure 6. Collapse of a measured AO model probability distribution onto the 3D Ising fixed point
function. The solid curve is the measured form of P(ηc − rηp) for an AO model with q = 0.8
and r = 0.25 in a cubic box with edge L = 21.0 and ηr

p = 0.7645. The dashed curve is the
universal fixed point function for the 3D Ising model [27]. The parameter λ is chosen such that
both distributions have unit variance.

Systems having short ranged interactions and a single component order parameter, such
as the AO model, are expected to belong to the 3D Ising universality class [26]. This means
that their scaling functions and critical exponents are identical to those of the 3D Ising model.
Consequently, the probability distribution P(ηc) for the AO model at criticality must match the
universal fixed point function PL(x) appropriate to the 3D Ising model. The latter function is
known from independent studies of the Ising model [27], and is shown in figure 6. PL(x) can
be used to locate critical values, in that one finds for instance the apparent polymer fugacity
ηr∗

p for which P(ηc) collapses onto PL(x). Since PL(x) is symmetric around the origin, and
P(ηc) is not, collapse of both distributions will only occur if the effects of field-mixing are
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Figure 7. (a) The apparent critical polymer fugacity ηr∗
p (defined by the collapse criterion described

in the text) as a function of L−(θ+1)/ν . The extrapolation of the linear least-squares fit to infinite
volume yields ηr

p,cr = 0.766 ± 0.002. (b) Polymer packing fraction η∗
p as a function of L−(1−α)/ν .

The least-squares fit yields an infinite volume estimate ηp,cr = 0.3562 ± 0.0006.

properly accounted for. In practice, this is achieved by measuring P(ηc − rηp), rather than
P(ηc) itself [24]. The quantity P(ηc −rηp) is defined as the probability of observing the linear
combination ηc − rηp, with r being a system-dependent parameter. For the AO model we
found r ≈ 0.25 by using ‘trial and error’. The resulting probability distribution is symmetric
and can be mapped onto PL(x), provided one has accurate data. An example of a collapse is
also shown in figure 6 and demonstrates the good quality of our data.

As another method to locate the critical point, we measured ηr∗
p for a number of different

system sizes L. A plot of ηr∗
p versus L−(θ+1)/ν should then lead to a straight line (the values of the

critical exponents appropriate to the 3D Ising model are θ ≈ 0.54, ν ≈ 0.629 and α = 0.11).
The intercept point of the line with the ordinate equals the critical polymer fugacity, for which
we obtain ηr

p,cr = 0.766 ± 0.002; see figure 7(a). This value is in excellent agreement with the
previous estimate.

The remaining critical quantities are determined in a similar way. For each system size L,
we record the colloid chemical potential µ∗

c , the colloid packing fraction η∗
c , and the polymer

packing fraction η∗
p , at the point where collapse onto the master curve occurs. A plot of µ∗

c

as a function of L−(θ+1)/ν yields a straight line; this holds also for η∗
c and η∗

p as functions of
L−(1−α)/ν . From extrapolation to infinite volume one gets the desired critical quantities which
are indicated in figures 7(b) and 8. For completeness, we have also marked the critical point
in the phase diagrams, as shown in figure 3.

In summary, our MC method for the AO model combined with FSS allows for accurate
estimates of the critical point. Moreover, the quality of the collapse in figure 6, together with
the flatter binodal in figure 3, gives evidence that the AO model indeed belongs to the 3D
Ising universality class. Although hardly surprising, this result is important because it may
explain the discrepancy of the (mean-field) free volume binodal with that estimated from our
simulation.

4. Capillary waves

We now focus on the analysis of spatial fluctuations of the interfaces formed between the
polymers and the colloids at states in the two-phase region. A consequence of these fluctuations
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Figure 8. (a) Colloid chemical potential µ∗
c as a function of L−(θ+1)/ν . The least-squares fit yields

an infinite volume estimate µc,cr = 3.063 ± 0.003. (b) Colloid packing fraction η∗
c as a function

of L−(1−α)/ν . The least-squares fit yields an infinite volume estimate ηc,cr = 0.1340 ± 0.0002.

is that the colloid–polymer interface does not have a flat shape but it exhibits spontaneous
undulations which can be quantified by the mean-square amplitude of the interface thickness
around a flat interface. Capillary wave theory [28–31] expresses the free energy cost �Fs

of the interfacial fluctuations by the interfacial tension γ times the excess in the area of the
undulated interface over that of the flat one. Thereby, one assumes that spatial variations
of the interface position occur over length scales much larger than the typical width of the
interface. If one denotes the local deviation of the interface position z0(x, y) (z is the Cartesian
component perpendicular to the interface, x, y the ones parallel to it) from the mean value by
h(x, y) = z0(x, y) − 〈z0(x, y)〉, one can write the free energy cost as [31]

�Fs = γ

2

∫
dx dy

[(
∂h

∂x

)2

+

(
∂h

∂y

)2]
. (2)

In the derivation of equation (2) one makes the further assumption that the derivatives ∂h/∂x
and ∂h/∂y are small, i.e. spatial variations of the interface are considered to be slowly varying
fluctuations.

h( �ρ) ≡ h(x, y) can be expressed in Fourier coordinates h(ρ) = 1√
A

∑
�q h(�q)ei�q· �ρ (with

the wavevector �q = (qx, qy) and A denoting the area of the flat interface) and then equation (2)
can be rewritten as

�Fs = γ

2

∑
�q

q2|h(�q)|2. (3)

Thus, the different �q modes are decoupled and one can make use of the equipartition theorem
to obtain

〈|h(�q)|2〉 = 1

γ q2
. (4)

One can now easily calculate the mean-squared real space fluctuations around a flat profile by

w2
cw = 〈h2( �ρ)〉 =

∑
�q

〈|h(�q)|2〉 = 1

(2π2)

∫
d�q 〈|h(�q)|2〉, (5)

which leads with equation (4) to

w2
cw = 〈h2( �ρ)〉 = 1

2πγ

∫ 2π/a

2π/Lx

dq

q
= 1

2πγ
ln

(
Lx

a

)
. (6)
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Here, Lx = L y is the length of the system in the directions parallel to the interface and a is a
cutoff length introduced in accordance with the assumption that only modes with a wavelength
larger than the typical width of the interface are taken into account.

In standard mean-field theory an expression for the functional form of the interfacial profile
φ(z) between the phase-separated phases can be given. One yields a hyperbolic tangent of the
form

φ(z) = A + B tanh

(
z − z0

w0

)
, (7)

where A and B are parameters that are related to the bulk densities, z0 is the position of
the interface and w0 its width. If one wants to combine the mean-field result with that of
capillary wave theory, one interprets w0 as a width of an intrinsic profile that is superposed
by fluctuations described by wcw. The total width w of the profile is then obtained from a
convolution approximation [32],

w2 = w2
0 +

π

2
w2

cw = w2
0 +

1

4γ
ln L − 1

4γ
ln(a). (8)

By means of this equation it is impossible to determine an intrinsic width w0 from experimental
or simulation data since one cannot disentangle the intrinsic width contribution w2

0 from the
‘cut-off’ contribution − 1

4γ
ln(a). Thus, one cannot compare directly the interfacial profiles as

obtained from the simulation to a mean-field result as the one by Vrij [33] or the one by Brader
and Evans [34] for the AO model. This issue has been studied in detail for the case of polymer
mixtures in [35–39].

The main issue in the following is to investigate whether a logarithmic divergence as
described by equation (8) can be seen in the simulation of the AO model. To this end, we restrict
the simulation to a region inside the phase-separated regime of the phase diagram for q = 0.8
(see figure 3). In this work we study states at ηc = 0.13 for the three polymer reservoir packing
fractions ηr

p = 0.9, 1.0, and 1.1. As can be inferred from figure 3, these state points are well
inside the phase-separated regime. The simulations are performed in a box with dimensions
V = Lx × L y × Lz using periodic boundary conditions. To obtain the desired colloid packing
fraction, the number of colloids inside V is Nc = ηcV/Vc, with Vc = (4π/3)R3

c being the
volume of a single colloid. To start the simulations, we prepare a box with Nc randomly
inserted colloids. We then equilibrate this system with grand canonical cluster moves and
random particle displacements. During equilibration, polymers enter the simulation volume
via the grand canonical cluster moves [15, 16]. Cluster moves and displacements are attempted
in a 1:1 ratio. Additionally, we restrict the grand canonical moves such that the number of
colloids ranges between Nc and Nc + 1 inclusive. We continue to equilibrate until phase
separation has occurred and a colloid–polymer interface has formed. A snapshot of the result
of this procedure is shown in figure 9.

To obtain the colloid density profile, we measure the local colloid packing fraction φ(z)
along the Lz axis after having shifted the centre of mass of the colloid phase to the origin.
In the following, Lx = L y and Lz > Lx such that the colloid–polymer interface is always
perpendicular to Lz. To improve statistics, we average φ(z) approximately every 500 attempted
MC moves per particle. The total number of averages taken is typically 104. Examples of
such averaged profiles at different ηr

p are shown in figure 10. The solid curves in this figure
are fits with the mean-field formula, equation (7). As demonstrated in figure 10, this formula
describes the simulation data very well at the considered state points away from the critical
point. However, the interfacial width that we read off from the fits with equation (7) is not the
intrinsic width w0 but it should be described by the one given by equation (8) if capillary wave
theory is applicable. Therefore, we identify the parameter w0 in equation (8) by the width w
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Figure 9. Typical snapshot of a phase-separated AO mixture obtained using our simulation method.
The mixture is contained in a box with dimensions Lx × L y × Lz and periodic boundary conditions
in all directions. The dark spheres are colloidal particles, light spheres are polymers.

Figure 10. Local colloid packing fraction φ(z) along the Lz axis in a phase-separated AO model
with q = 0.8 and several values of ηr

p as indicated. The simulations were performed in a box with
dimensions Lx = L y = 20 and Lz = 60 using periodic boundary conditions. Open circles are
simulation data; the solid curves are fits using the hyperbolic tangent of equation (7).

and we discuss in detail the dependence of w on a variation of L ≡ Lx = L y and D ≡ Lz ,
i.e. the size of the simulation box parallel and perpendicular to the interfaces, respectively.
Note that we consider only the state with ηr

p = 1.1 in the following.
Consider again the snapshot in figure 9. Since we use periodic boundary conditions in all

directions, the phase-separated mixture contains two interfaces as a result. If the perpendicular
dimension D is small, the interfaces will interact with each other. It is not surprising then for
the interfacial width w to be D dependent. However, one would expect that if D becomes
large enough, any L dependence in w should vanish. This is indeed the case, provided the
lateral dimension L is sufficiently large. If L is (too) small, the interfacial width will show a
systematic D dependence that, moreover, depends on the simulation ensemble. In the grand
canonical ensemble, one expects a (roughly) linear dependence of w on D. In this case, the
dominant fluctuations of the interface are those where the interface fluctuates as a whole. For
large D, the interface is freely fluctuating, and thus displacements of order D can occur. In
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Figure 11. Interfacial width w as a function of the perpendicular box dimension D for an AO
mixture with lateral box dimensions L = 10. For small lateral dimensions in the grand canonical
ensemble, the interfacial width grows roughly linearly with D, indefinitely (the dashed line is a fit
with a linear law).

Figure 12. Interfacial width w as a function of the perpendicular box dimension D for an AO
mixture with lateral box dimensions L = 20. In this case, the lateral dimension is sufficiently large
for any D dependence to vanish.

figure 11, the linear dependence of w on D is confirmed for the AO model. For our AO mixture
with q = 0.8, linear growth is observed for L ≈ 10 and smaller.

It is thus important to choose L large enough such that the interfacial width does not
depend on D any more. This needs to be checked by varying D over a large range. For the
AO model, we find such a regime for L ≈ 20 and higher; see figure 12. Once this regime
is established, we vary the lateral dimension L to study its effect on w. In this regime the
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Figure 13. Interfacial width squared w2 as a function of the lateral dimension L for a phase-
separated AO model with D = 60. In this regime the logarithmic growth of the interface due to
capillary waves is visible (note the logarithmic L scale). The line is a least-squares fit through the
simulation data of the form w2 = A ln(L)+ B (where A and B are fit parameters). The inset shows
the same data, but now w2 is plotted as a function of L to show that the data cannot be described
by a linear growth of w2.

prediction of capillary wave theory, equation (8), can be tested to see whether the square of
the interfacial width is proportional to the logarithm of the lateral dimension L. The measured
behaviour for the AO model shown in figure 13 is in agreement with this prediction. However,
one may argue that the range that is spanned in ln L is relatively small and that one would
obtain also a straight line on a linear L-scale. But, as is demonstrated by the inset of figure 13,
the data are not consistent with a linear growth of w2 with L.

Our results thus confirm the expected dependence of the interfacial width on the
perpendicular and lateral dimensions of the simulation volume. As far as simulations are
concerned, it is important to establish a regime in which the linear broadening shown in
figure 11 has vanished. For an AO model with q = 0.8, a lateral dimension of about 20 colloid
radii is sufficient to achieve this. In this regime, the expected logarithmic broadening due to
capillary waves is confirmed in figure 13. This result is important because it shows that the
interfacial width cannot be regarded as an intrinsic variable. Consequently, investigations of
the colloid–polymer interface in which these size effects are not addressed must be treated
with some care (see also [35] and references therein).

5. Conclusions

In this paper we have used grand canonical MC methods to study the bulk phase behaviour
of the AO model. Our results agree qualitatively with previous work, namely that phase
separation occurs provided that the polymer fugacity is high enough. However, deviations
from mean-field behaviour are clearly visible. We have also determined the interfacial tension
of the colloid–polymer interface. Our results confirm the sharp increase in the interfacial
tension predicted by DFT. This shows that the AO model is not realistic enough to facilitate
comparisons to experiment. We used FSS to accurately determine the critical point. This also
provides additional evidence that the AO model indeed belongs to the 3D Ising universality
class. Finally, we quantified the effects of the size of the simulation volume on the width of
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the colloid–polymer interface due to capillary waves. These effects are not artefacts of the
simulation but occur in real systems also [36]. Our results confirm the conclusion of [35],
namely that the intrinsic width w0 of equation (7) is a hypothetical quantity, neither accessible
in simulations, nor in experiments.
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